High Energy Physics - Theory
[Submitted on 19 Apr 2022 (v1), last revised 20 Jun 2022 (this version, v2)]
Title:Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions
View PDFAbstract:We discuss a variety of codimension-one, non-invertible topological defects in general 3+1d QFTs with a discrete one-form global symmetry. These include condensation defects from higher gauging of the one-form symmetries on a codimension-one manifold, each labeled by a discrete torsion class, and duality and triality defects from gauging in half of spacetime. The universal fusion rules between these non-invertible topological defects and the one-form symmetry surface defects are determined. Interestingly, the fusion coefficients are generally not numbers, but 2+1d TQFTs, such as invertible SPT phases, $\mathbb{Z}_N$ gauge theories, and $U(1)_N$ Chern-Simons theories. The associativity of these algebras over TQFT coefficients relies on nontrivial facts about 2+1d TQFTs. We further prove that some of these non-invertible symmetries are intrinsically incompatible with a trivially gapped phase, leading to nontrivial constraints on renormalization group flows. Duality and triality defects are realized in many familiar gauge theories, including free Maxwell theory, non-abelian gauge theories with orthogonal gauge groups, ${\cal N}=1,$ and ${\cal N}=4$ super Yang-Mills theories.
Submission history
From: Shu-Heng Shao [view email][v1] Tue, 19 Apr 2022 17:35:30 UTC (446 KB)
[v2] Mon, 20 Jun 2022 02:34:09 UTC (446 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.