Electrical Engineering and Systems Science > Systems and Control
[Submitted on 20 Apr 2022 (v1), last revised 21 Apr 2022 (this version, v2)]
Title:Learning Data-Driven PCHD Models for Control Engineering Applications
View PDFAbstract:The design of control engineering applications usually requires a model that accurately represents the dynamics of the real system. In addition to classical physical modeling, powerful data-driven approaches are increasingly used. However, the resulting models are not necessarily in a form that is advantageous for controller design. In the control engineering domain, it is highly beneficial if the system dynamics is given in PCHD form (Port-Controlled Hamiltonian Systems with Dissipation) because globally stable control laws can be easily realized while physical interpretability is guaranteed. In this work, we exploit the advantages of both strategies and present a new framework to obtain nonlinear high accurate system models in a data-driven way that are directly in PCHD form. We demonstrate the success of our method by model-based application on an academic example, as well as experimentally on a test bed.
Submission history
From: Annika Junker [view email][v1] Wed, 20 Apr 2022 13:01:49 UTC (1,041 KB)
[v2] Thu, 21 Apr 2022 05:08:24 UTC (1,059 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.