Physics > Physics and Society
[Submitted on 20 Apr 2022 (v1), last revised 23 Dec 2022 (this version, v2)]
Title:Taxonomy of Cohesion Coefficients for Weighted and Directed Multilayer Networks
View PDFAbstract:Clustering and closure coefficients are among the most widely applied indicators in the description of the topological structure of a network. Many distinct definitions have been proposed over time, particularly in the case of weighted networks, where the choice of the weight attributed to the triangles is a crucial aspect. In the present work, in the framework of weighted directed multilayer networks, we extend the classical clustering and closure coefficients through the introduction of the clumping coefficient, which generalizes them to incomplete triangles of any type. We then organize the class of these coefficients in a systematic taxonomy in the more general context of weighted directed multilayer networks. Such cohesion coefficients have also been adapted to the different scales that characterize a multilayer network, in order to grasp their structure from different perspectives. We also show how the tensor formalism allows incorporating the new definitions, as well as all those existing in the literature, in a single unified writing, in such a way that a suitable choice of the involved adjacency tensors allows obtaining each of them. Finally, through some applications to simulated networks, we show the effectiveness of the proposed coefficients in capturing different peculiarities of the network structure on different scales.
Submission history
From: Paolo Bartesaghi [view email][v1] Wed, 20 Apr 2022 14:56:43 UTC (1,004 KB)
[v2] Fri, 23 Dec 2022 09:59:57 UTC (1,123 KB)
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.