Statistics > Machine Learning
[Submitted on 21 Apr 2022 (v1), last revised 11 Nov 2024 (this version, v5)]
Title:Ultra-marginal Feature Importance: Learning from Data with Causal Guarantees
View PDF HTML (experimental)Abstract:Scientists frequently prioritize learning from data rather than training the best possible model; however, research in machine learning often prioritizes the latter. Marginal contribution feature importance (MCI) was developed to break this trend by providing a useful framework for quantifying the relationships in data. In this work, we aim to improve upon the theoretical properties, performance, and runtime of MCI by introducing ultra-marginal feature importance (UMFI), which uses dependence removal techniques from the AI fairness literature as its foundation. We first propose axioms for feature importance methods that seek to explain the causal and associative relationships in data, and we prove that UMFI satisfies these axioms under basic assumptions. We then show on real and simulated data that UMFI performs better than MCI, especially in the presence of correlated interactions and unrelated features, while partially learning the structure of the causal graph and reducing the exponential runtime of MCI to super-linear.
Submission history
From: Joseph Janssen [view email][v1] Thu, 21 Apr 2022 07:54:58 UTC (6,026 KB)
[v2] Mon, 13 Jun 2022 17:33:12 UTC (14,009 KB)
[v3] Sun, 17 Jul 2022 05:10:49 UTC (14,337 KB)
[v4] Thu, 16 Feb 2023 23:25:26 UTC (14,084 KB)
[v5] Mon, 11 Nov 2024 08:34:20 UTC (5,163 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.