Computer Science > Networking and Internet Architecture
[Submitted on 22 Mar 2022]
Title:Distributed Learning for Vehicular Dynamic Spectrum Access in Autonomous Driving
View PDFAbstract:Reliable wireless communication between the autonomously driving cars is one of the fundamental needs for guaranteeing passenger safety and comfort. However, when the number of communicating cars increases, the transmission quality may be significantly degraded due to too high occupancy radio of the used frequency band. In this paper, we concentrate on the autonomous vehicle-platooning use-case, where intra-platoon communication is done in the dynamically selected frequency band, other than nominally devoted for such purposes. The carrier selection is done in a flexible manner with the support of the context database located at the roadside unit (edge of wireless communication infrastructure). However, as the database delivers only context information to the platoons' leaders, the final decision is made separately by the individual platoons, following the suggestions made by the artificial intelligence algorithms. In this work, we concentrate on a lightweight Q-learning solution, that could be successfully implemented in each car for dynamic channel selection.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.