Computer Science > Machine Learning
[Submitted on 21 Apr 2022]
Title:The Silent Problem -- Machine Learning Model Failure -- How to Diagnose and Fix Ailing Machine Learning Models
View PDFAbstract:The COVID-19 pandemic has dramatically changed how healthcare is delivered to patients, how patients interact with healthcare providers, and how healthcare information is disseminated to both healthcare providers and patients. Analytical models that were trained and tested pre-pandemic may no longer be performing up to expectations, providing unreliable and irrelevant learning (ML) models given that ML depends on the basic principle that what happened in the past are likely to repeat in the future. ML faced to two important degradation principles, concept drift, when the underlying properties and characteristics of the variables change and data drift, when the data distributions, probabilities, co-variates, and other variable relationships change, both of which are prime culprits of model failure. Therefore, detecting and diagnosing drift in existing models is something that has become an imperative. And perhaps even more important is a shift in our mindset towards a conscious recognition that drift is inevitable, and model building must incorporate intentional resilience, the ability to offset and recover quickly from failure, and proactive robustness, avoiding failure by developing models that are less vulnerable to drift and disruption.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.