Physics > Atmospheric and Oceanic Physics
[Submitted on 21 Apr 2022 (v1), last revised 16 May 2023 (this version, v3)]
Title:Invariants and chaos in the Volterra gyrostat without energy conservation
View PDFAbstract:The model of the Volterra gyrostat (VG) has not only played an important role in rigid body dynamics but also served as the foundation of low-order models of many naturally occurring systems. It is well known that VG possesses two invariants, or constants of motion, corresponding to kinetic energy and squared angular momentum, giving oscillatory solutions to its equations of motion. Nine distinct subclasses of the VG have been identified, two of which the Euler gyroscope and Lorenz gyrostat are each known to have two constants. This paper characterizes quadratic invariants of the VG and each of its subclasses, showing how these enjoy two invariants even when rendered in terms of a non-invertible transformation of parameters, leading to a transformed Volterra gyrostat (TVG). If the quadratic coefficients of the TVG sum to zero, as they do for the VG, the system conserves energy. In all of these cases, the flows preserve volume. However, physical models where the quadratic coefficients do not sum to zero are ubiquitous, and characterization of invariants and the resulting dynamics for this more general class of models with volume conservation but without energy conservation is lacking. This paper provides the first such characterization for each of the subclasses of the VG in the absence of energy conservation, showing how the number of invariants depends on the number of linear feedback terms. It is shown that the gyrostat with three linear feedback terms has no invariants. The number of invariants circumscribes the possible dynamics for these three-dimensional flows, and those without any invariants are shown to admit rich dynamics including chaos. This gives rise to a broad class of three-dimensional volume conserving chaotic flows, arising naturally from model reduction techniques.
Submission history
From: Ashwin Seshadri [view email][v1] Thu, 21 Apr 2022 18:23:48 UTC (545 KB)
[v2] Thu, 27 Oct 2022 17:15:17 UTC (1,043 KB)
[v3] Tue, 16 May 2023 15:27:37 UTC (1,047 KB)
Current browse context:
physics.ao-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.