Computer Science > Computational Geometry
[Submitted on 21 Apr 2022]
Title:Lattice and Non-lattice Piercing of Axis-Parallel Rectangles: Exact Algorithms and a Separation Result
View PDFAbstract:For a given family of shapes ${\mathcal F}$ in the plane, we study what is the lowest possible density of a point set $P$ that pierces ("intersects", "hits") all translates of each shape in ${\mathcal F}$. For instance, if ${\mathcal F}$ consists of two axis-parallel rectangles the best known piercing set, i.e., one with the lowest density, is a lattice: for certain families the known lattices are provably optimal whereas for other, those lattices are just the best piercing sets currently known.
Given a finite family ${\mathcal F}$ of axis-parallel rectangles, we present two algorithms for finding an optimal ${\mathcal F}$-piercing lattice. Both algorithms run in time polynomial in the number of rectangles and the maximum aspect ratio of the rectangles in the family. No prior algorithms were known for this problem.
Then we prove that for every $n \geq 3$, there exist a family of $n$ axis-parallel rectangles for which the best piercing density achieved by a lattice is separated by a positive (constant) gap from the optimal piercing density for the respective family. Finally, we sharpen our separation result by running the first algorithm on a suitable instance, and show that the best lattice can be sometimes worse by $20\%$ than the optimal piercing set.
Current browse context:
cs.CG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.