Mathematics > Dynamical Systems
[Submitted on 22 Apr 2022 (v1), last revised 31 Oct 2022 (this version, v2)]
Title:Sparse dynamical system identification with simultaneous structural parameters and initial condition estimation
View PDFAbstract:Sparse Identification of Nonlinear Dynamics (SINDy) has been shown to successfully recover governing equations from data; however, this approach assumes the initial condition to be exactly known in advance and is sensitive to noise. In this work we propose an integral SINDy (ISINDy) method to simultaneously identify model structure and parameters of nonlinear ordinary differential equations (ODEs) from noisy time-series observations. First, the states are estimated via penalized spline smoothing and then substituted into the integral-form numerical discretization solver, leading to a pseudo-linear regression. The sequential threshold least squares is performed to extract the fewest active terms from the overdetermined set of candidate features, thereby estimating structural parameters and initial condition simultaneously and meanwhile, making the identified dynamics parsimonious and interpretable. Simulations detail the method's recovery accuracy and robustness to noise. Examples include a logistic equation, Lokta-Volterra system, and Lorenz system.
Submission history
From: Baolei Wei [view email][v1] Fri, 22 Apr 2022 02:51:55 UTC (2,407 KB)
[v2] Mon, 31 Oct 2022 13:33:57 UTC (3,835 KB)
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.