Statistics > Methodology
[Submitted on 22 Apr 2022 (v1), last revised 1 Oct 2024 (this version, v3)]
Title:Identification enhanced generalised linear model estimation with nonignorable missing outcomes
View PDF HTML (experimental)Abstract:Missing data often result in undesirable bias and loss of efficiency. These become substantial problems when the response mechanism is nonignorable, such that the response model depends on unobserved variables. It is necessary to estimate the joint distribution of unobserved variables and response indicators to manage nonignorable nonresponse. However, model misspecification and identification issues prevent robust estimates despite careful estimation of the target joint distribution. In this study, we modelled the distribution of the observed parts and derived sufficient conditions for model identifiability, assuming a logistic regression model as the response mechanism and generalised linear models as the main outcome model of interest. More importantly, the derived sufficient conditions are testable with the observed data and do not require any instrumental variables, which are often assumed to guarantee model identifiability but cannot be practically determined beforehand. To analyse missing data, we propose a new imputation method which incorporates verifiable identifiability using only observed data. Furthermore, we present the performance of the proposed estimators in numerical studies and apply the proposed method to two sets of real data: exit polls for the 19th South Korean election data and public data collected from the Korean Survey of Household Finances and Living Conditions.
Submission history
From: Kenji Beppu [view email][v1] Fri, 22 Apr 2022 05:24:12 UTC (44 KB)
[v2] Tue, 20 Feb 2024 07:06:57 UTC (32 KB)
[v3] Tue, 1 Oct 2024 15:12:46 UTC (437 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.