Statistics > Methodology
[Submitted on 22 Apr 2022]
Title:Analysing Opportunity Cost of Care Work using Mixed Effects Random Forests under Aggregated Census Data
View PDFAbstract:Reliable estimators of the spatial distribution of socio-economic indicators are essential for evidence-based policy-making. As sample sizes are small for highly disaggregated domains, the accuracy of the direct estimates is reduced. To overcome this problem small area estimation approaches are promising. In this work we propose a small area methodology using machine learning methods. The semi-parametric framework of mixed effects random forest combines the advantages of random forests (robustness against outliers and implicit model-selection) with the ability to model hierarchical dependencies. Existing random forest-based methods require access to auxiliary information on population-level. We present a methodology that deals with the lack of population micro-data. Our strategy adaptively incorporates aggregated auxiliary information through calibration-weights - based on empirical likelihood - for the estimation of area-level means. In addition to our point estimator, we provide a non-parametric bootstrap estimator measuring its uncertainty. The performance of the proposed point estimator and its uncertainty measure is studied in model-based simulations. Finally, the proposed methodology is applied to the $2011$ Socio-Economic Panel and aggregate census information from the same year to estimate the average opportunity cost of care work for $96$ regional planning regions in Germany.
Submission history
From: Patrick Krennmair [view email][v1] Fri, 22 Apr 2022 14:49:49 UTC (5,470 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.