Statistics > Methodology
[Submitted on 22 Apr 2022]
Title:Group sequential methods for interim monitoring of randomized clinical trials with time-lagged outcome
View PDFAbstract:The primary analysis in two-arm clinical trials usually involves inference on a scalar treatment effect parameter; e.g., depending on the outcome, the difference of treatment-specific means, risk difference, risk ratio, or odds ratio. Most clinical trials are monitored for the possibility of early stopping. Because ordinarily the outcome on any given subject can be ascertained only after some time lag, at the time of an interim analysis, among the subjects already enrolled, the outcome is known for only a subset and is effectively censored for those who have not been enrolled sufficiently long for it to be observed. Typically, the interim analysis is based only on the data from subjects for whom the outcome has been ascertained. A goal of an interim analysis is to stop the trial as soon as the evidence is strong enough to do so, suggesting that the analysis ideally should make the most efficient use of all available data, thus including information on censoring as well as other baseline and time-dependent covariates in a principled way. A general group sequential framework is proposed for clinical trials with a time-lagged outcome. Treatment effect estimators that take account of censoring and incorporate covariate information at an interim analysis are derived using semiparametric theory and are demonstrated to lead to stronger evidence for early stopping than standard approaches. The associated test statistics are shown to have the independent increments structure, so that standard software can be used to obtain stopping boundaries.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.