Statistics > Methodology
[Submitted on 23 Apr 2022]
Title:An Efficient Approach for Optimizing the Cost-effective Individualized Treatment Rule Using Conditional Random Forest
View PDFAbstract:Evidence from observational studies has become increasingly important for supporting healthcare policy making via cost-effectiveness (CE) analyses. Similar as in comparative effectiveness studies, health economic evaluations that consider subject-level heterogeneity produce individualized treatment rules (ITRs) that are often more cost-effective than one-size-fits-all treatment. Thus, it is of great interest to develop statistical tools for learning such a cost-effective ITR (CE-ITR) under the causal inference framework that allows proper handling of potential confounding and can be applied to both trials and observational studies. In this paper, we use the concept of net-monetary-benefit (NMB) to assess the trade-off between health benefits and related costs. We estimate CE-ITR as a function of patients' characteristics that, when implemented, optimizes the allocation of limited healthcare resources by maximizing health gains while minimizing treatment-related costs. We employ the conditional random forest approach and identify the optimal CE-ITR using NMB-based classification algorithms, where two partitioned estimators are proposed for the subject-specific weights to effectively incorporate information from censored individuals. We conduct simulation studies to evaluate the performance of our proposals. We apply our top-performing algorithm to the NIH-funded Systolic Blood Pressure Intervention Trial (SPRINT) to illustrate the CE gains of assigning customized intensive blood pressure therapy.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.