Computer Science > Machine Learning
[Submitted on 23 Apr 2022]
Title:Dimension Reduction for time series with Variational AutoEncoders
View PDFAbstract:In this work, we explore dimensionality reduction techniques for univariate and multivariate time series data. We especially conduct a comparison between wavelet decomposition and convolutional variational autoencoders for dimension reduction. We show that variational autoencoders are a good option for reducing the dimension of high dimensional data like ECG. We make these comparisons on a real world, publicly available, ECG dataset that has lots of variability and use the reconstruction error as the metric. We then explore the robustness of these models with noisy data whether for training or inference. These tests are intended to reflect the problems that exist in real-world time series data and the VAE was robust to both tests.
Submission history
From: Jean Michel Loubes [view email][v1] Sat, 23 Apr 2022 12:26:01 UTC (900 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.