Computer Science > Social and Information Networks
[Submitted on 23 Apr 2022]
Title:The SCORE normalization, especially for highly heterogeneous network and text data
View PDFAbstract:SCORE was introduced as a spectral approach to network community detection. Since many networks have severe degree heterogeneity, the ordinary spectral clustering (OSC) approach to community detection may perform unsatisfactorily. SCORE alleviates the effect of degree heterogeneity by introducing a new normalization idea in the spectral domain and makes OSC more effective. SCORE is easy to use and computationally fast. It adapts easily to new directions and sees an increasing interest in practice. In this paper, we review the basics of SCORE, the adaption of SCORE to network mixed membership estimation and topic modeling, and the application of SCORE in real data, including two datasets on the publications of statisticians. We also review the theoretical 'ideology' underlying SCORE. We show that in the spectral domain, SCORE converts a simplicial cone to a simplex, and provides a simple and direct link between the simplex and network memberships. SCORE attains an exponential rate and a sharp phase transition in community detection, and achieves optimal rates in mixed membership estimation and topic modeling.
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.