Statistics > Methodology
[Submitted on 24 Apr 2022 (v1), last revised 29 Jun 2022 (this version, v3)]
Title:Two-stage matching-adjusted indirect comparison
View PDFAbstract:Anchored covariate-adjusted indirect comparisons inform reimbursement decisions where there are no head-to-head trials between the treatments of interest, there is a common comparator arm shared by the studies, and there are patient-level data limitations. Matching-adjusted indirect comparison (MAIC) is the most widely used covariate-adjusted indirect comparison method. MAIC has poor precision and is inefficient when the effective sample size after weighting is small. A modular extension to MAIC, termed two-stage matching-adjusted indirect comparison (2SMAIC), is proposed. This uses two parametric models. One estimates the treatment assignment mechanism in the study with individual patient data (IPD), the other estimates the trial assignment mechanism. The resulting weights seek to balance covariates between treatment arms and across studies. A simulation study provides proof-of-principle in an indirect comparison performed across two randomized trials and explores the use of weight truncation in combination with MAIC for the first time. Despite enforcing randomization and knowing the true treatment assignment mechanism in the IPD trial, 2SMAIC yields improved precision and efficiency with respect to MAIC in all scenarios, while maintaining similarly low levels of bias. The two-stage approach is effective when sample sizes in the IPD trial are low, as it controls for chance imbalances in prognostic baseline covariates between study arms. It is not as effective when overlap between the trials' target populations is poor and the extremity of the weights is high. In these scenarios, truncation leads to substantial precision and efficiency gains but induces considerable bias. The combination of a two-stage approach with truncation produces the highest precision and efficiency improvements.
Submission history
From: Antonio Remiro-Azócar Dr. [view email][v1] Sun, 24 Apr 2022 17:22:53 UTC (287 KB)
[v2] Tue, 26 Apr 2022 15:27:55 UTC (287 KB)
[v3] Wed, 29 Jun 2022 22:26:19 UTC (288 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.