Statistics > Methodology
[Submitted on 25 Apr 2022]
Title:Robust inference for non-destructive one-shot device testing under step-stress model with exponential lifetimes
View PDFAbstract:One-shot devices analysis involves an extreme case of interval censoring, wherein one can only know whether the failure time is either before or after the test time. Some kind of one-shot devices do not get destroyed when tested, and so can continue within the experiment, providing extra information for inference, if they did not fail before an inspection time. In addition, their reliability can be rapidly estimated via accelerated life tests (ALTs) by running the tests at varying and higher stress levels than working conditions. In particular, step-stress tests allow the experimenter to increase the stress levels at pre-fixed times gradually during the life-testing experiment. The cumulative exposure model is commonly assumed for step-stress models, relating the lifetime distribution of units at one stress level to the lifetime distributions at preceding stress levels. In this paper,vwe develop robust estimators and Z-type test statistics based on the density power divergence (DPD) for testing linear null hypothesis for non-destructive one-shot devices under the step-stress ALTs with exponential lifetime distribution. We study asymptotic and robustness properties of the estimators and test statistics, yielding point estimation and confidence intervals for different lifetime characteristic such as reliability, distribution quantiles and mean lifetime of the devices. A simulation study is carried out to assess the performance of the methods of inference developed here and some real-life data sets are analyzed finally for illustrative purpose.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.