Statistics > Methodology
[Submitted on 25 Apr 2022 (v1), last revised 25 Oct 2024 (this version, v4)]
Title:Semi-Parametric Sensitivity Analysis for Trials with Irregular and Informative Assessment Times
View PDF HTML (experimental)Abstract:Many trials are designed to collect outcomes at or around pre-specified times after randomization. If there is variability in the times when participants are actually assessed, this can pose a challenge to learning the effect of treatment, since not all participants have outcome assessments at the times of interest. Furthermore, observed outcome values may not be representative of all participants' outcomes at a given time. Methods have been developed that account for some types of such irregular and informative assessment times; however, since these methods rely on untestable assumptions, sensitivity analyses are needed. We develop a methodology that is benchmarked at the explainable assessmen (EA) assumption, under which assessment and outcomes at each time are related only through data collected prior to that time. Our method uses an exponential tilting assumption, governed by a sensitivity analysis parameter, that posits deviations from the EA assumption. Our inferential strategy is based on a new influence function-based, augmented inverse intensity-weighted estimator. Our approach allows for flexible semiparametric modeling of the observed data, which is separated from specification of the sensitivity parameter. We apply our method to a randomized trial of low-income individuals with uncontrolled asthma, and we illustrate implementation of our estimation procedure in detail.
Submission history
From: Bonnie Smith [view email][v1] Mon, 25 Apr 2022 22:02:59 UTC (99 KB)
[v2] Sat, 29 Oct 2022 05:57:30 UTC (100 KB)
[v3] Sun, 5 Nov 2023 17:21:27 UTC (2,855 KB)
[v4] Fri, 25 Oct 2024 02:20:13 UTC (2,834 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.