Statistics > Methodology
[Submitted on 26 Apr 2022 (v1), last revised 19 Mar 2023 (this version, v3)]
Title:Robust Two-Layer Partition Clustering of Sparse Multivariate Functional Data
View PDFAbstract:A novel elastic time distance for sparse multivariate functional data is proposed and used to develop a robust distance-based two-layer partition clustering method. With this proposed distance, the new approach not only can detect correct clusters for sparse multivariate functional data under outlier settings but also can detect those outliers that do not belong to any clusters. Classical distance-based clustering methods such as density-based spatial clustering of applications with noise (DBSCAN), agglomerative hierarchical clustering, and $K$-medoids are extended to the sparse multivariate functional case based on the newly-proposed distance. Numerical experiments on simulated data highlight that the performance of the proposed algorithm is superior to the performances of existing model-based and extended distance-based methods. The effectiveness of the proposed approach is demonstrated using Northwest Pacific cyclone tracks data as an example.
Submission history
From: Zhuo Qu [view email][v1] Tue, 26 Apr 2022 07:56:06 UTC (7,176 KB)
[v2] Sun, 27 Nov 2022 18:30:34 UTC (7,187 KB)
[v3] Sun, 19 Mar 2023 00:38:40 UTC (7,220 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.