Statistics > Methodology
[Submitted on 26 Apr 2022]
Title:On automatic calibration of the SIRD epidemiological model for COVID-19 data in Poland
View PDFAbstract:We propose a novel methodology for estimating the epidemiological parameters of a modified SIRD model (acronym of Susceptible, Infected, Recovered and Deceased individuals) and perform a short-term forecast of SARS-CoV-2 virus spread. We mainly focus on forecasting number of deceased. The procedure was tested on reported data for Poland. For some short-time intervals we performed numerical test investigating stability of parameter estimates in the proposed approach. Numerical experiments confirm the effectiveness of short-term forecasts (up to 2 weeks) and stability of the method. To improve their performance (i.e. computation time) GPU architecture was used in computations.
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.