Computer Science > Data Structures and Algorithms
[Submitted on 27 Apr 2022]
Title:Optimal Closeness Testing of Discrete Distributions Made (Complex) Simple
View PDFAbstract:In this note, we revisit the recent work of Diakonikolas, Gouleakis, Kane, Peebles, and Price (2021), and provide an alternative proof of their main result. Our argument does not rely on any specific property of Poisson random variables (such as stability and divisibility) nor on any "clever trick," but instead on an identity relating the expectation of the absolute value of any random variable to the integral of its characteristic function:
\[
\mathbb{E}[|X|] = \frac{2}{\pi}\int_0^\infty \frac{1-\Re(\mathbb{E}[e^{i tX}])}{t^2}\, dt
\]
Our argument, while not devoid of technical aspects, is arguably conceptually simpler and more general; and we hope this technique can find additional applications in distribution testing.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.