Statistics > Methodology
[Submitted on 28 Apr 2022 (v1), last revised 3 May 2022 (this version, v2)]
Title:A robust Bayesian analysis of variable selection under prior ignorance
View PDFAbstract:We propose a cautious Bayesian variable selection routine by investigating the sensitivity of a hierarchical model, where the regression coefficients are specified by spike and slab priors. We exploit the use of latent variables to understand the importance of the co-variates. These latent variables also allow us to obtain the size of the model space which is an important aspect of high dimensional problems. In our approach, instead of fixing a single prior, we adopt a specific type of robust Bayesian analysis, where we consider a set of priors within the same parametric family to specify the selection probabilities of these latent variables. We achieve that by considering a set of expected prior selection probabilities, which allows us to perform a sensitivity analysis to understand the effect of prior elicitation on the variable selection. The sensitivity analysis provides us sets of posteriors for the regression coefficients as well as the selection indicators and we show that the posterior odds of the model selection probabilities are monotone with respect to the prior expectations of the selection probabilities. We also analyse synthetic and real life datasets to illustrate our cautious variable selection method and compare it with other well known methods.
Submission history
From: Matthias Troffaes [view email][v1] Thu, 28 Apr 2022 08:25:58 UTC (183 KB)
[v2] Tue, 3 May 2022 10:06:37 UTC (168 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.