Statistics > Methodology
[Submitted on 29 Apr 2022 (v1), last revised 14 Nov 2022 (this version, v2)]
Title:Inverse Probability Weighting: from Survey Sampling to Evidence Estimation
View PDFAbstract:We consider the class of inverse probability weight (IPW) estimators, including the popular Horvitz-Thompson and Hajek estimators used routinely in survey sampling, causal inference and evidence estimation for Bayesian computation. We focus on the 'weak paradoxes' for these estimators due to two counterexamples by Basu [1988] and Wasserman [2004] and investigate the two natural Bayesian answers to this problem: one based on binning and smoothing : a 'Bayesian sieve' and the other based on a conjugate hierarchical model that allows borrowing information via exchangeability. We compare the mean squared errors for the two Bayesian estimators with the IPW estimators for Wasserman's example via simulation studies on a broad range of parameter configurations. We also prove posterior consistency for the Bayes estimators under missing-completely-at-random assumption and show that it requires fewer assumptions on the inclusion probabilities. We also revisit the connection between the different problems where improved or adaptive IPW estimators will be useful, including survey sampling, evidence estimation strategies such as Conditional Monte Carlo, Riemannian sum, Trapezoidal rules and vertical likelihood, as well as average treatment effect estimation in causal inference.
Submission history
From: Jyotishka Datta [view email][v1] Fri, 29 Apr 2022 14:18:12 UTC (322 KB)
[v2] Mon, 14 Nov 2022 19:52:53 UTC (445 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.