Statistics > Methodology
[Submitted on 29 Apr 2022 (v1), last revised 12 Sep 2023 (this version, v2)]
Title:Actor Heterogeneity and Explained Variance in Network Models -- A Scalable Approach through Variational Approximations
View PDFAbstract:The analysis of network data has gained considerable interest in recent years. This also includes the analysis of large, high-dimensional networks with hundreds and thousands of nodes. While exponential random graph models serve as workhorse for network data analyses, their applicability to very large networks is problematic via classical inference such as maximum likelihood or exact Bayesian estimation owing to scaling and instability issues. The latter trace from the fact that classical network statistics consider nodes as exchangeable, i.e., actors in the network are assumed to be homogeneous. This is often questionable. One way to circumvent the restrictive assumption is to include actor-specific random effects, which account for unobservable heterogeneity. However, this increases the number of unknowns considerably, thus making the model highly-parameterized. As a solution even for very large networks, we propose a scalable approach based on variational approximations, which not only leads to numerically stable estimation but is also applicable to high-dimensional directed as well as undirected networks. We furthermore demonstrate that including node-specific covariates can reduce node heterogeneity, which we facilitate through versatile prior formulations and a new measure that we call posterior explained variance. We illustrate our approach in three diverse examples, covering network data from the Italian Parliament, international arms trading, and Facebook; and conduct detailed simulation studies.
Submission history
From: Nadja Klein Prof. Dr. [view email][v1] Fri, 29 Apr 2022 16:44:11 UTC (4,783 KB)
[v2] Tue, 12 Sep 2023 13:04:29 UTC (1,906 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.