Computer Science > Information Theory
[Submitted on 17 May 2022]
Title:Secure Summation: Capacity Region, Groupwise Key, and Feasibility
View PDFAbstract:The secure summation problem is considered, where $K$ users, each holds an input, wish to compute the sum of their inputs at a server securely, i.e., without revealing any information beyond the sum even if the server may collude with any set of up to $T$ users. First, we prove a folklore result for secure summation - to compute $1$ bit of the sum securely, each user needs to send at least $1$ bit to the server, each user needs to hold a key of at least $1$ bit, and all users need to hold collectively some key variables of at least $K-1$ bits. Next, we focus on the symmetric groupwise key setting, where every group of $G$ users share an independent key. We show that for symmetric groupwise keys with group size $G$, when $G > K-T$, the secure summation problem is not feasible; when $G \leq K-T$, to compute $1$ bit of the sum securely, each user needs to send at least $1$ bit to the server and the size of each groupwise key is at least $(K-T-1)/\binom{K-T}{G}$ bits. Finally, we relax the symmetry assumption on the groupwise keys and the colluding user sets; we allow any arbitrary group of users to share an independent key and any arbitrary group of users to collude with the server. For such a general groupwise key and colluding user setting, we show that secure summation is feasible if and only if the hypergraph, where each node is a user and each edge is a group of users sharing the same key, is connected after removing the nodes corresponding to any colluding set of users and their incident edges.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.