Mathematics > Optimization and Control
[Submitted on 23 May 2022 (v1), last revised 20 Mar 2024 (this version, v3)]
Title:Application of tropical optimization for solving multicriteria problems of pairwise comparisons using log-Chebyshev approximation
View PDF HTML (experimental)Abstract:We consider a decision-making problem to find absolute ratings of alternatives that are compared in pairs under multiple criteria, subject to constraints in the form of two-sided bounds on ratios between the ratings. Given matrices of pairwise comparisons made according to the criteria, the problem is formulated as the log-Chebyshev approximation of these matrices by a common consistent matrix (a symmetrically reciprocal matrix of unit rank) to minimize the approximation errors for all matrices simultaneously. We rearrange the approximation problem as a constrained multiobjective optimization problem of finding a vector that determines the approximating consistent matrix. The problem is then represented in the framework of tropical algebra, which deals with the theory and applications of idempotent semirings and provides a formal basis for fuzzy and interval arithmetic. We apply methods and results of tropical optimization to develop a new approach for handling the multiobjective optimization problem according to various principles of optimality. New complete solutions in the sense of the max-ordering, lexicographic ordering and lexicographic max-ordering optimality are obtained, which are given in a compact vector form ready for formal analysis and efficient computation. We present numerical examples of solving multicriteria problems of rating four alternatives from pairwise comparisons to illustrate the technique and compare it with others.
Submission history
From: Nikolai Krivulin [view email][v1] Mon, 23 May 2022 00:28:54 UTC (24 KB)
[v2] Wed, 30 Aug 2023 11:27:13 UTC (30 KB)
[v3] Wed, 20 Mar 2024 22:04:59 UTC (32 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.