Computer Science > Machine Learning
[Submitted on 23 May 2022 (v1), last revised 28 Dec 2023 (this version, v2)]
Title:DOGE-Train: Discrete Optimization on GPU with End-to-end Training
View PDFAbstract:We present a fast, scalable, data-driven approach for solving relaxations of 0-1 integer linear programs. We use a combination of graph neural networks (GNN) and the Lagrange decomposition based algorithm FastDOG (Abbas and Swoboda 2022b). We make the latter differentiable for end-to-end training and use GNNs to predict its algorithmic parameters. This allows to retain the algorithm's theoretical properties including dual feasibility and guaranteed non-decrease in the lower bound while improving it via training. We overcome suboptimal fixed points of the basic solver by additional non-parametric GNN update steps maintaining dual feasibility. For training we use an unsupervised loss. We train on smaller problems and test on larger ones showing strong generalization performance with a GNN comprising only around $10k$ parameters. Our solver achieves significantly faster performance and better dual objectives than its non-learned version, achieving close to optimal objective values of LP relaxations of very large structured prediction problems and on selected combinatorial ones. In particular, we achieve better objective values than specialized approximate solvers for specific problem classes while retaining their efficiency. Our solver has better any-time performance over a large time period compared to a commercial solver. Code available at this https URL
Submission history
From: Ahmed Abbas [view email][v1] Mon, 23 May 2022 21:09:41 UTC (834 KB)
[v2] Thu, 28 Dec 2023 20:55:19 UTC (1,211 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.