Computer Science > Machine Learning
[Submitted on 24 May 2022 (v1), last revised 14 Feb 2024 (this version, v2)]
Title:Compression-aware Training of Neural Networks using Frank-Wolfe
View PDFAbstract:Many existing Neural Network pruning approaches rely on either retraining or inducing a strong bias in order to converge to a sparse solution throughout training. A third paradigm, 'compression-aware' training, aims to obtain state-of-the-art dense models that are robust to a wide range of compression ratios using a single dense training run while also avoiding retraining. We propose a framework centered around a versatile family of norm constraints and the Stochastic Frank-Wolfe (SFW) algorithm that encourage convergence to well-performing solutions while inducing robustness towards convolutional filter pruning and low-rank matrix decomposition. Our method is able to outperform existing compression-aware approaches and, in the case of low-rank matrix decomposition, it also requires significantly less computational resources than approaches based on nuclear-norm regularization. Our findings indicate that dynamically adjusting the learning rate of SFW, as suggested by Pokutta et al. (2020), is crucial for convergence and robustness of SFW-trained models and we establish a theoretical foundation for that practice.
Submission history
From: Max Zimmer [view email][v1] Tue, 24 May 2022 09:29:02 UTC (1,216 KB)
[v2] Wed, 14 Feb 2024 16:43:50 UTC (1,052 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.