High Energy Physics - Theory
[Submitted on 24 May 2022]
Title:Differential Expansion for antiparallel triple pretzels: the way the factorization is deformed
View PDFAbstract:For a peculiar family of double braid knots there is a remarkable factorization formula for the coefficients of the differential (cyclotomic) expansion (DE), which nowadays is widely used to construct the exclusive Racah matrices $S$ and $\bar S$ in arbitrary representations. The origins of the factorization remain obscure and the special role of double braids remains a mystery. In an attempt to broaden the perspective, we extend the family of double braids to antiparallel triple pretzels, which are obtained by the defect-preserving deformation from the trefoil and all have defect zero. It turns out that factorization of DE coefficients is violated quite strongly, still remains described by an elegant formula, at least for all symmetric representations.
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.