Computer Science > Machine Learning
[Submitted on 26 May 2022 (v1), last revised 21 Sep 2024 (this version, v4)]
Title:Does DQN Learn?
View PDF HTML (experimental)Abstract:For a reinforcement learning method to be useful, the policy it estimates in the limit must be superior to the initial guess, at least on average. In this work, we show that the widely used Deep Q-Network (DQN) fails to meet even this basic criterion, even when it gets to see all possible states and actions infinitely often (a condition that ensures tabular Q-learning's convergence to the optimal Q-value). Our work's key highlights are as follows. First, we numerically show that DQN generally has a non-trivial probability of producing a policy worse than the initial one. Second, we give a theoretical explanation for this behavior in the context of linear DQN, wherein we replace the neural network with a linear function approximation but retain DQN's other key ideas, such as experience replay, target network, and $\epsilon$-greedy exploration. Our main result is that the tail behaviors of linear DQN are governed by invariant sets of a deterministic differential inclusion, a set-valued generalization of a differential equation. Notably, we show that these invariant sets need not align with locally optimal policies, thus explaining DQN's pathological behaviors, such as convergence to sub-optimal policies and policy oscillation. We also provide a scenario where the limiting policy is always the worst. Our work addresses a longstanding gap in understanding the behaviors of Q-learning with function approximation and $\epsilon$-greedy exploration.
Submission history
From: Gugan Thoppe [view email][v1] Thu, 26 May 2022 20:46:01 UTC (703 KB)
[v2] Sun, 4 Dec 2022 15:43:14 UTC (1,914 KB)
[v3] Fri, 10 Feb 2023 23:03:02 UTC (4,286 KB)
[v4] Sat, 21 Sep 2024 04:58:24 UTC (1,424 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.