Mathematics > Dynamical Systems
[Submitted on 27 May 2022]
Title:Emergence of phase-locked states for a deterministic and stochastic Winfree model with inertia
View PDFAbstract:We study the emergence of phase-locking for Winfree oscillators under the effect of inertia. It is known that in a large coupling regime, oscillators governed by the deterministic second-order Winfree model with inertia converge to a unique equilibrium. In contrast, in this paper we show the asymptotic emergence of non-trivial synchronization in a suitably small coupling regime. Moreover, we study the effect of a new stochastically perturbed Winfree system with multiplicative noise and obtain lower estimates in probability for the pathwise emergence of such a synchronizing pattern, provided the noise is sufficiently small. We also provide numerical simulations which hint at the possibility of more general and stronger analytical results.
Current browse context:
math.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.