Computer Science > Machine Learning
[Submitted on 28 May 2022 (v1), last revised 8 Mar 2024 (this version, v3)]
Title:Functional Linear Regression of Cumulative Distribution Functions
View PDFAbstract:The estimation of cumulative distribution functions (CDF) is an important learning task with a great variety of downstream applications, such as risk assessments in predictions and decision making. In this paper, we study functional regression of contextual CDFs where each data point is sampled from a linear combination of context dependent CDF basis functions. We propose functional ridge-regression-based estimation methods that estimate CDFs accurately everywhere. In particular, given $n$ samples with $d$ basis functions, we show estimation error upper bounds of $\widetilde O(\sqrt{d/n})$ for fixed design, random design, and adversarial context cases. We also derive matching information theoretic lower bounds, establishing minimax optimality for CDF functional regression. Furthermore, we remove the burn-in time in the random design setting using an alternative penalized estimator. Then, we consider agnostic settings where there is a mismatch in the data generation process. We characterize the error of the proposed estimators in terms of the mismatched error, and show that the estimators are well-behaved under model mismatch. Moreover, to complete our study, we formalize infinite dimensional models where the parameter space is an infinite dimensional Hilbert space, and establish a self-normalized estimation error upper bound for this setting. Notably, the upper bound reduces to the $\widetilde O(\sqrt{d/n})$ bound when the parameter space is constrained to be $d$-dimensional. Our comprehensive numerical experiments validate the efficacy of our estimation methods in both synthetic and practical settings.
Submission history
From: Qian Zhang [view email][v1] Sat, 28 May 2022 23:59:50 UTC (578 KB)
[v2] Wed, 21 Dec 2022 02:01:04 UTC (683 KB)
[v3] Fri, 8 Mar 2024 04:50:17 UTC (6,034 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.