Mathematics > Analysis of PDEs
[Submitted on 30 May 2022]
Title:Wave equations estimates and the nonlinear stability of slowly rotating Kerr black holes
View PDFAbstract:This is the last part of our proof of the nonlinear stability of the Kerr family for small angular momentum, i.e $|a|/m\ll 1$, in which we deal with the nonlinear wave type estimates needed to complete the project. More precisely we provide complete proofs for Theorems M1 and M2 as well the curvature estimates of Theorem M8, which were stated without proof in sections 3.7.1 and 9.4.7 of \cite{KS:Kerr}. Our procedure is based on a new general interest formalism (detailed in Part I of this work), which extends the one used in the stability of Minkowski space. Together with \cite{KS:Kerr} and the GCM papers \cite{KS-GCM1}, \cite{KS-GCM2}, \cite{Shen}, this work completes proof of the Main Theorem stated in Section 3.4 of \cite{KS:Kerr}.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.