Mathematics > Optimization and Control
[Submitted on 1 Jun 2022 (v1), last revised 14 Mar 2024 (this version, v2)]
Title:Statistical and Computational Complexities of BFGS Quasi-Newton Method for Generalized Linear Models
View PDFAbstract:The gradient descent (GD) method has been used widely to solve parameter estimation in generalized linear models (GLMs), a generalization of linear models when the link function can be non-linear. In GLMs with a polynomial link function, it has been shown that in the high signal-to-noise ratio (SNR) regime, due to the problem's strong convexity and smoothness, GD converges linearly and reaches the final desired accuracy in a logarithmic number of iterations. In contrast, in the low SNR setting, where the problem becomes locally convex, GD converges at a slower rate and requires a polynomial number of iterations to reach the desired accuracy. Even though Newton's method can be used to resolve the flat curvature of the loss functions in the low SNR case, its computational cost is prohibitive in high-dimensional settings as it is $\mathcal{O}(d^3)$, where $d$ the is the problem dimension. To address the shortcomings of GD and Newton's method, we propose the use of the BFGS quasi-Newton method to solve parameter estimation of the GLMs, which has a per iteration cost of $\mathcal{O}(d^2)$. When the SNR is low, for GLMs with a polynomial link function of degree $p$, we demonstrate that the iterates of BFGS converge linearly to the optimal solution of the population least-square loss function, and the contraction coefficient of the BFGS algorithm is comparable to that of Newton's method. Moreover, the contraction factor of the linear rate is independent of problem parameters and only depends on the degree of the link function $p$. Also, for the empirical loss with $n$ samples, we prove that in the low SNR setting of GLMs with a polynomial link function of degree $p$, the iterates of BFGS reach a final statistical radius of $\mathcal{O}((d/n)^{\frac{1}{2p+2}})$ after at most $\log(n/d)$ iterations.
Submission history
From: Qiujiang Jin [view email][v1] Wed, 1 Jun 2022 03:07:38 UTC (450 KB)
[v2] Thu, 14 Mar 2024 15:45:04 UTC (1,349 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.