Mathematics > Optimization and Control
[Submitted on 1 Jun 2022 (v1), last revised 14 Jan 2024 (this version, v2)]
Title:Stochastic Gradient Methods with Preconditioned Updates
View PDF HTML (experimental)Abstract:This work considers the non-convex finite sum minimization problem. There are several algorithms for such problems, but existing methods often work poorly when the problem is badly scaled and/or ill-conditioned, and a primary goal of this work is to introduce methods that alleviate this issue. Thus, here we include a preconditioner based on Hutchinson's approach to approximating the diagonal of the Hessian, and couple it with several gradient-based methods to give new scaled algorithms: Scaled SARAH and Scaled L-SVRG. Theoretical complexity guarantees under smoothness assumptions are presented. We prove linear convergence when both smoothness and the PL condition are assumed. Our adaptively scaled methods use approximate partial second-order curvature information and, therefore, can better mitigate the impact of badly scaled problems. This improved practical performance is demonstrated in the numerical experiments also presented in this work.
Submission history
From: Aleksandr Beznosikov [view email][v1] Wed, 1 Jun 2022 07:38:08 UTC (38,062 KB)
[v2] Sun, 14 Jan 2024 17:18:32 UTC (21,390 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.