Mathematics > Numerical Analysis
[Submitted on 1 Jun 2022]
Title:Discrete Gradient Flow Approximations of High Dimensional Evolution Partial Differential Equations via Deep Neural Networks
View PDFAbstract:We consider the approximation of initial/boundary value problems involving, possibly high-dimensional, dissipative evolution partial differential equations (PDEs) using a deep neural network framework. More specifically, we first propose discrete gradient flow approximations based on non-standard Dirichlet energies for problems involving essential boundary conditions posed on bounded spatial domains. The imposition of the boundary conditions is realized weakly via non-standard functionals; the latter classically arise in the construction of Galerkin-type numerical methods and are often referred to as "Nitsche-type" methods. Moreover, inspired by the seminal work of Jordan, Kinderleher, and Otto (JKO) \cite{jko}, we consider the second class of discrete gradient flows for special classes of dissipative evolution PDE problems with non-essential boundary conditions. These JKO-type gradient flows are solved via deep neural network approximations. A key, distinct aspect of the proposed methods is that the discretization is constructed via a sequence of residual-type deep neural networks (DNN) corresponding to implicit time-stepping. As a result, a DNN represents the PDE problem solution at each time node. This approach offers several advantages in the training of each DNN. We present a series of numerical experiments which showcase the good performance of Dirichlet-type energy approximations for lower space dimensions and the excellent performance of the JKO-type energies for higher spatial dimensions.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.