Mathematics > Numerical Analysis
[Submitted on 1 Jun 2022 (v1), last revised 27 Sep 2022 (this version, v2)]
Title:ORKA: Object reconstruction using a K-approximation graph
View PDFAbstract:Data processing has to deal with many practical difficulties. Data is often corrupted by artifacts or noise and acquiring data can be expensive and difficult. Thus, the given data is often incomplete and inaccurate. To overcome these problems, it is often assumed that the data is sparse or low-dimensional in some domain. When multiple measurements are taken, this sparsity often appears in a structured manner. We propose a new model that assumes the data only contains a few relevant objects, i.e., it is sparse in some object domain. We model an object as a structure that can only change slightly in form and continuously in position over different measurements. This can be modeled by a matrix with highly correlated columns and a column shift operator that we introduce in this work. We present an efficient algorithm to solve the object reconstruction problem based on a K-approximation graph. We prove optimal approximation bounds and perform a numerical evaluation of the method. Examples from applications including Geophysics, video processing, and others will be given.
Submission history
From: Florian Boßmann [view email][v1] Wed, 1 Jun 2022 10:04:06 UTC (4,696 KB)
[v2] Tue, 27 Sep 2022 06:00:05 UTC (4,733 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.