Computer Science > Information Theory
[Submitted on 1 Jun 2022]
Title:Edge Learning for B5G Networks with Distributed Signal Processing: Semantic Communication, Edge Computing, and Wireless Sensing
View PDFAbstract:To process and transfer large amounts of data in emerging wireless services, it has become increasingly appealing to exploit distributed data communication and learning. Specifically, edge learning (EL) enables local model training on geographically disperse edge nodes and minimizes the need for frequent data exchange. However, the current design of separating EL deployment and communication optimization does not yet reap the promised benefits of distributed signal processing, and sometimes suffers from excessive signalling overhead, long processing delay, and unstable learning convergence. In this paper, we provide an overview on practical distributed EL techniques and their interplay with advanced communication optimization designs. In particular, typical performance metrics for dual-functional learning and communication networks are discussed. Also, recent achievements of enabling techniques for the dual-functional design are surveyed with exemplifications from the mutual perspectives of "communications for learning" and "learning for communications." The application of EL techniques within a variety of future communication systems are also envisioned for beyond 5G (B5G) wireless networks. For the application in goal-oriented semantic communication, we present a first mathematical model of the goal-oriented source entropy as an optimization problem. In addition, from the viewpoint of information theory, we identify fundamental open problems of characterizing rate regions for communication networks supporting distributed learning-and-computing tasks. We also present technical challenges as well as emerging application opportunities in this field, with the aim of inspiring future research and promoting widespread developments of EL in B5G.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.