Mathematics > Symplectic Geometry
[Submitted on 1 Jun 2022]
Title:Generalizing the Mukai Conjecture to the symplectic category and the Kostant game
View PDFAbstract:In this paper we pose the question of whether the (generalized) Mukai inequalities hold for compact, positive monotone symplectic manifolds. We first provide a method that enables one to check whether the (generalized) Mukai inequalities hold true. This only makes use of the almost complex structure of the manifold and the analysis of the zeros of the so-called generalized Hilbert polynomial, which takes into account the Atiyah-Singer indices of all possible line bundles. We apply this method to generalized flag varieties. In order to find the zeros of the corresponding generalized Hilbert polynomial we introduce a modified version of the Kostant game and study its combinatorial properties.
Current browse context:
math.SG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.