Mathematics > Probability
[Submitted on 1 Jun 2022]
Title:Subexponential mixing for partition chains on grid-like graphs
View PDFAbstract:We consider the problem of generating uniformly random partitions of the vertex set of a graph such that every piece induces a connected subgraph. For the case where we want to have partitions with linearly many pieces of bounded size, we obtain approximate sampling algorithms based on Glauber dynamics which are fixed-parameter tractable with respect to the bandwidth of $G$, with simple-exponential dependence on the bandwidth. For example, for rectangles of constant or logarithmic width this gives polynomial-time sampling algorithms. More generally, this gives sub-exponential algorithms for bounded-degree graphs without large expander subgraphs (for example, we obtain $O(2^{\sqrt n})$ time algorithms for square grids).
In the case where we instead want partitions with a small number of pieces of linear size, we show that Glauber dynamics can have exponential mixing time, even just for the case of 2 pieces, and even for 2-connected subgraphs of the grid with bounded bandwidth.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.