Mathematics > Numerical Analysis
[Submitted on 1 Jun 2022]
Title:Convergence rates of individual Ritz values in block preconditioned gradient-type eigensolvers
View PDFAbstract:Many popular eigensolvers for large and sparse Hermitian matrices or matrix pairs can be interpreted as accelerated block preconditioned gradient (BPG) iterations in order to analyze their convergence behavior by composing known estimates. An important feature of BPG is the cluster robustness, i.e., reasonable performance for computing clustered eigenvalues is ensured by a sufficiently large block size. This feature can easily be explained for exact-inverse (exact shift-inverse) preconditioning by adapting classical estimates on nonpreconditioned eigensolvers, whereas the existing results for more general preconditioning are still improvable. We expect to extend certain sharp estimates for the corresponding vector iterations to BPG where proper bounds of convergence rates of individual Ritz values are to be derived. Such an extension has been achieved for BPG with fixed step sizes in [Math. Comp. 88 (2019), 2737--2765]. The present paper deals with the more practical case that the step sizes are implicitly optimized by the Rayleigh-Ritz method. Our new estimates improve some previous ones in view of concise and more flexible bounds.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.