Mathematics > Algebraic Topology
[Submitted on 2 Jun 2022]
Title:An enriched degree of the Wronski
View PDFAbstract:Given $mp$ different $p$-planes in general position in $(m+p)$-dimensional space, a classical problem is to ask how many $p$-planes intersect all of them. For example when $m = p = 2$, this is precisely the question of "lines meeting four lines in 3-space" after projectivizing. The Brouwer degree of the Wronski map provides an answer to this general question, first computed by Schubert over the complex numbers and Eremenko and Gabrielov over the reals. We provide an enriched degree of the Wronski for all $m$ and $p$ even, valued in the Grothendieck-Witt ring of a field, using machinery from $\mathbf{A}^1$-homotopy theory. We further demonstrate in all parities that the local contribution of an $m$-plane is a determinantal relationship between certain Plücker coordinates of the $p$-planes it intersects.
Current browse context:
math.AT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.