Mathematics > Optimization and Control
[Submitted on 2 Jun 2022 (v1), last revised 10 Apr 2023 (this version, v3)]
Title:Accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient
View PDFAbstract:In this paper we develop accelerated first-order methods for convex optimization with locally Lipschitz continuous gradient (LLCG), which is beyond the well-studied class of convex optimization with Lipschitz continuous gradient. In particular, we first consider unconstrained convex optimization with LLCG and propose accelerated proximal gradient (APG) methods for solving it. The proposed APG methods are equipped with a verifiable termination criterion and enjoy an operation complexity of ${\cal O}(\varepsilon^{-1/2}\log \varepsilon^{-1})$ and ${\cal O}(\log \varepsilon^{-1})$ for finding an $\varepsilon$-residual solution of an unconstrained convex and strongly convex optimization problem, respectively. We then consider constrained convex optimization with LLCG and propose an first-order proximal augmented Lagrangian method for solving it by applying one of our proposed APG methods to approximately solve a sequence of proximal augmented Lagrangian subproblems. The resulting method is equipped with a verifiable termination criterion and enjoys an operation complexity of ${\cal O}(\varepsilon^{-1}\log \varepsilon^{-1})$ and ${\cal O}(\varepsilon^{-1/2}\log \varepsilon^{-1})$ for finding an $\varepsilon$-KKT solution of a constrained convex and strongly convex optimization problem, respectively. All the proposed methods in this paper are parameter-free or almost parameter-free except that the knowledge on convexity parameter is required. In addition, preliminary numerical results are presented to demonstrate the performance of our proposed methods. To the best of our knowledge, no prior studies were conducted to investigate accelerated first-order methods with complexity guarantees for convex optimization with LLCG. All the complexity results obtained in this paper are new.
Submission history
From: Zhaosong Lu [view email][v1] Thu, 2 Jun 2022 10:34:26 UTC (26 KB)
[v2] Fri, 24 Jun 2022 17:51:21 UTC (26 KB)
[v3] Mon, 10 Apr 2023 23:45:49 UTC (31 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.