Mathematics > Optimization and Control
[Submitted on 2 Jun 2022 (v1), last revised 5 Oct 2023 (this version, v2)]
Title:Deceptive Planning for Resource Allocation
View PDFAbstract:We consider a team of autonomous agents that navigate in an adversarial environment and aim to achieve a task by allocating their resources over a set of target locations. An adversary in the environment observes the autonomous team's behavior to infer their objective and responds against the team. In this setting, we propose strategies for controlling the density of the autonomous team so that they can deceive the adversary regarding their objective while achieving the desired final resource allocation. We first develop a prediction algorithm based on the principle of maximum entropy to express the team's behavior expected by the adversary. Then, by measuring the deceptiveness via Kullback-Leibler divergence, we devise convex optimization-based planning algorithms that deceive the adversary by either exaggerating the behavior towards a decoy allocation strategy or creating ambiguity regarding the final allocation strategy. A user study with $320$ participants demonstrates that the proposed algorithms are effective for deception and reveal the inherent biases of participants towards proximate goals.
Submission history
From: Mustafa O. Karabag [view email][v1] Thu, 2 Jun 2022 21:23:16 UTC (92 KB)
[v2] Thu, 5 Oct 2023 23:18:40 UTC (144 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.