Mathematics > Analysis of PDEs
[Submitted on 7 Jun 2022]
Title:On Multiple Solutions to a Family of Nonlinear Elliptic Systems in Divergence Form Coupled with an Incompressibility Constraint
View PDFAbstract:The aim of this paper is to prove the existence of multiple solutions for a family of nonlinear elliptic systems in divergence form coupled with a pointwise gradient constraint: \begin{align*} \left\{ \begin{array}{ll} \dive\{\A(|x|,|u|^2,|\nabla u|^2) \nabla u\} + \B(|x|,|u|^2,|\nabla u|^2) u = \dive \{ \mcP(x) [{\rm cof}\,\nabla u] \} \quad &\text{ in} \ \Omega , \\ \text{det}\, \nabla u = 1 \ &\text{ in} \ \Omega , \\ u =\varphi \ &\text{ on} \ \partial \Omega, \end{array} \right. \end{align*} where $\Omega \subset \mathbb{R}^n$ ($n \ge 2$) is a bounded domain, $u=(u_1, \dots, u_n)$ is a vector-map and $\varphi$ is a prescribed boundary condition. Moreover $\mathscr{P}$ is a hydrostatic pressure associated with the constraint $\det \nabla u \equiv 1$ and $\A = \A(|x|,|u|^2,|\nabla u|^2)$, $\B = \B(|x|,|u|^2,|\nabla u|^2)$ are sufficiently regular scalar-valued functions satisfying suitable growths at infinity. The system arises in diverse areas, e.g., in continuum mechanics and nonlinear elasticity, as well as geometric function theory to name a few and a clear understanding of the form and structure of the solutions set is of great significance. The geometric type of solutions constructed here draws upon intimate links with the Lie group ${\bf SO}(n)$, its Lie exponential and the multi-dimensional curl operator acting on certain vector fields. Most notably a discriminant type quantity $\Delta=\Delta(\A,\B)$, prompting from the PDE, will be shown to have a decisive role on the structure and multiplicity of these solutions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.