Computer Science > Information Theory
[Submitted on 22 Jun 2022]
Title:Model-Driven Deep Learning-Based MIMO-OFDM Detector: Design, Simulation, and Experimental Results
View PDFAbstract:Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM), a fundamental transmission scheme, promises high throughput and robustness against multipath fading. However, these benefits rely on the efficient detection strategy at the receiver and come at the expense of the extra bandwidth consumed by the cyclic prefix (CP). We use the iterative orthogonal approximate message passing (OAMP) algorithm in this paper as the prototype of the detector because of its remarkable potential for interference suppression. However, OAMP is computationally expensive for the matrix inversion per iteration. We replace the matrix inversion with the conjugate gradient (CG) method to reduce the complexity of OAMP. We further unfold the CG-based OAMP algorithm into a network and tune the critical parameters through deep learning (DL) to enhance detection performance. Simulation results and complexity analysis show that the proposed scheme has significant gain over other iterative detection methods and exhibits comparable performance to the state-of-the-art DL-based detector at a reduced computational cost. Furthermore, we design a highly efficient CP-free MIMO-OFDM receiver architecture to remove the CP overhead. This architecture first eliminates the intersymbol interference by buffering the previously recovered data and then detects the signal using the proposed detector. Numerical experiments demonstrate that the designed receiver offers a higher spectral efficiency than traditional receivers. Finally, over-the-air tests verify the effectiveness and robustness of the proposed scheme in realistic environments.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.