Computer Science > Information Theory
[Submitted on 22 Jun 2022 (v1), last revised 8 Dec 2022 (this version, v2)]
Title:Communication by Means of Thermal Noise: Towards Networks with Extremely Low Power Consumption
View PDFAbstract:In this paper, the paradigm of thermal noise communication (TherCom) is put forward for future wired/wireless networks with extremely low power consumption. Taking backscatter communication (BackCom) and reconfigurable intelligent surface (RIS)-based radio frequency chain-free transmitters one step further, a thermal noise-driven transmitter might enable zero-signal-power transmission by simply indexing resistors or other noise sources according to information bits. This preliminary paper aims to shed light on the theoretical foundations, transceiver designs, and error performance derivations as well as optimizations of two emerging TherCom solutions: Kirchhoff-law-Johnson-noise (KLJN) secure bit exchange and wireless thermal noise modulation (TherMod) schemes. Our theoretical and computer simulation findings reveal that noise variance detection, supported by sample variance estimation with carefully optimized decision thresholds, is a reliable way of extracting the embedded information from noise modulated signals, even with limited number of noise samples.
Submission history
From: Ertugrul Basar [view email][v1] Wed, 22 Jun 2022 19:22:31 UTC (2,182 KB)
[v2] Thu, 8 Dec 2022 17:06:03 UTC (2,949 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.