Mathematics > Statistics Theory
[Submitted on 24 Jun 2022 (v1), last revised 20 Jul 2022 (this version, v2)]
Title:On the validity of bootstrap uncertainty estimates in the Mallows-Binomial model
View PDFAbstract:The Mallows-Binomial distribution is the first joint statistical model for rankings and ratings (Pearce and Erosheva, 2022). Because frequentist estimation of the model parameters and their uncertainty is challenging, it is natural to consider the nonparametric bootstrap. However, it is not clear that the nonparametric bootstrap is asymptotically valid in this setting. This is because the Mallows-Binomial model is parameterized by continuous quantities whose discrete order affects the likelihood. In this note, we demonstrate that bootstrap uncertainty of the maximum likelihood estimates in the Mallows-Binomial model are asymptotically valid.
Submission history
From: Michael Pearce [view email][v1] Fri, 24 Jun 2022 16:30:19 UTC (24 KB)
[v2] Wed, 20 Jul 2022 18:07:29 UTC (24 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.