Mathematics > Functional Analysis
[Submitted on 3 Jul 2022 (v1), last revised 18 Jan 2023 (this version, v2)]
Title:A metric fixed point theorem and some of its applications
View PDFAbstract:A general fixed point theorem for isometries in terms of metric functionals is proved under the assumption of the existence of a conical bicombing. It is new even for isometries of Banach spaces as well as for non-locally compact CAT(0)-spaces and injective spaces. Examples of actions on non-proper CAT(0)-spaces come from the study of diffeomorphism groups, birational transformations, and compact Kähler manifolds. A special case of the fixed point theorem provides a novel mean ergodic theorem that in the Hilbert space case implies von Neumann's theorem. The theorem accommodates classically fixed-point-free isometric maps such as those of Kakutani, Edelstein, Alspach and Prus. Moreover, from the main theorem together with some geometric arguments of independent interest, one can deduce that every bounded invertible operator of a Hilbert space admits a nontrivial invariant metric functional on the space of positive operators. This is a result in the direction of the invariant subspace problem although its full meaning is dependent on a future determination of such metric functionals.
Submission history
From: Anders Karlsson [view email][v1] Sun, 3 Jul 2022 06:07:04 UTC (20 KB)
[v2] Wed, 18 Jan 2023 12:15:13 UTC (24 KB)
Current browse context:
math.FA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.