Mathematics > Functional Analysis
[Submitted on 8 Jul 2022]
Title:Maximal Function and Riesz Transform Characterizations of Hardy Spaces Associated with Homogeneous Higher Order Elliptic Operators and Ball Quasi-Banach Function Spaces
View PDFAbstract:Let $L$ be a homogeneous divergence form higher order elliptic operator with complex bounded measurable coefficients on $\mathbb{R}^n$ and $X$ a ball quasi-Banach function space on $\mathbb{R}^n$ satisfying some mild assumptions. Denote by $H_{X,\, L}(\mathbb{R}^n)$ the Hardy space, associated with both $L$ and $X$, which is defined via the Lusin area function related to the semigroup generated by $L$. In this article, the authors establish both the maximal function and the Riesz transform characterizations of $H_{X,\, L}(\mathbb{R}^n)$. The results obtained in this article have a wide range of generality and can be applied to the weighted Hardy space, the variable Hardy space, the mixed-norm Hardy space, the Orlicz--Hardy space, the Orlicz-slice Hardy space, and the Morrey--Hardy space, associated with $L$. In particular, even when $L$ is a second order divergence form elliptic operator, both the maximal function and the Riesz transform characterizations of the mixed-norm Hardy space, the Orlicz-slice Hardy space, and the Morrey--Hardy space, associated with $L$, obtained in this article, are totally new.
Current browse context:
math.FA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.